
Journal of Applied Mechanics and Technical Physics, Vol. 37, No. 5, 1996 

C A L C U L A T I O N  O F  T E M P E R A T U R E  R E G I M E S  

F O R  S T R E A M L I N E D  B O D I E S  

W I T H  V A R I O U S  T H E R M A L  P R O P E R T I E S  

V. I. Zinchenko,  V. I. Laeva, and T. S. Sandrykina  UDC 533.526:536.24 

Heat exchange occurring in a body at high supersonic velocities can be an effective means for protecting 
constructions from overheating in regions of maximum heat fluxes, as was noted for steady-state regimes 
[1, 2]. Analysis [3] of the characteristics of nonstationary conjugate heat exchange for various flow regimes 
in the boundary layer showed that  a large drop in surface temperature can cause not only heat exchange 
but also blow-in of a cooling gas in regions of high heat loads. The above-mentioned works are concerned 
with axisymmetric flow around a body. At the same time, of much practical interest is the motion at angles 
of attack at which the difference between the heat fluxes on the windward and leeward sides can be rather 
substantial and cause heat transfer in both the lengthwise and circular directions. 

In the present paper, we solve the problem of heating and study the influence of heat transfer in a spatial 
case for materials with various thermal properties. The thermal state for a three-dimensional nonstationary 
heat-conduction equation is modeled using boundary conditions that  correspond to assignment of heat fluxes 
from the gas phase for spatial supersonic flow around a spherically blunted cone with allowance for the 
influence of possible blow-in from the surface of a spherically blunted end. 

1. To determine temperature  fields in a porous spherical casing under the assumption of one- 
dimensional filtration of blown gas toward the normal to the surface, we write the equation of conservation 
of energy in the natural coordinate system related to the body axis as 
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(1.1) 

O < n l  < L /R~v ,  O < s < s l ,  O < ~o < ~r. 

For the conical part of the body, the heat-conduction equation in a cylindrical coordinate system has 
the form 

00 10(00) 0(00) 
zl < z  < z f ,  rwl < r < r w ( z ) ,  

At the gas flow-body interface, we have 

)re0 
Owv/-R-ee Pr -~-. -- 7r~04 = - (Tral 0 ~ l ) , , ,  

on the inner surface of the porous casing, 

( 0 0 )  = vf~e pr  ~0 r~ 

, 

0 < ~p < 7r. 
(1.2) 

i = 1, 2; (1.3) 

- -  (p- '~)w(0i -  0wl);  (1.4)  
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on the inner surface of the conical part, 

at the sphere-cone interface, 

1 O0 1 
+ t a n  

for z = zf the adiabatic condition is 

0o I 
OZ z=zf 

for flow having a symmetry plane 

the initial condition is 

O0 ] = O; (1.5) 
7T)~2 -~F r=rtol 
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+ q l  + h 2 tan 23 if-hi = 7rx2 ~zz; (1.6) 

= 0 ;  (1 .7)  

900=0 O0 = = 0; (1 .8)  
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In (1.1)-(1.9) the linear dimensions are referred to the radius of the blunted end RN; 0 = T/T. is the 
dimensionless temperature; hi = 1 - nl and r = rw - nl cos X are the Lam6 coefficients for the spherical part; 
(~-fi)~ = (pv),~V/-~/(pr is the dimensionless flow rate of the cooling gas; 

plCl (1 - -  l ' I )  2t- pgCg I t ,  )~1 (1 -- II) + Ag 
rPl - p , c ,  p , c ,  r~l  = ~ ~ II, 

p2c2 A2 ecrT3~o RN t peovm RN 
7rP2= p,c,'  r ~ 2 =  A'-'~' r ~ , -  X, , r = ~ ,  R e -  /~o 

are dimensionless parameters; t, = R2Np, c,]X, is the characteristic time; n] is the normal to the external 
contour of the body; fl is the cone half-angle; and ?1w is the dimensionless heat flux from the gas phase which 
is related to the dimensional value 

qw Pr w 

as 7t,, = qwvfff@(P~ov,nH~o), where v,~ = v~-H-~, He0 is the enthalpy of retardation. The subscripts e0 and w 
refer to the conditions on the outer surface of the boundary layer at the retardation point and at the interface 
between the media nl = 0, respectively, wl refers to the conditions at the inner contour of the calculation 
region, 1 and 2 to the characteristics of the condensed phase of the spherical and conical parts; g to the gas 
phase of the porous casing; asterisk to the characteristic values; and i to the initial temperature. 

Note that, in addition to the above boundary conditions in the vicinity of the retardation point of the 
flow on the spherical part, for Eq. (1.1) we can establish the symmetry conditions in the coordinate system 
related to the retardation point. To determine the heat flux from the gas phase qw, it is necessary to solve the 
conjugate problem of seeking the characteristics of the spatial boundary layer. In the first stage, however, we 
use the formulas of [4] for q,~(z, ~v) for impermeable bodies, which are in fair agreement with the calculated 
results of [5]. In this case, in the absence of blow-in from the surface of the blunted end in the turbulent 
regime, the heat flux on the conical part has the form 

( ~ ) 0  (_.~p)O 2.2(pe/peo)(ue/Vm) 16.4-,1.25 0.2 
~J~5 P~ (1.10) 

q~ = (Hr - hw), = kO.4r~ 2 Ro/~2( 1 + hwlUeo)2/3 , 

where [41 uelvm = q l  - (pelPeo)C~-l)iv; k = (7 - 1 + 2 / M 2 ) / ( 7  + 1); Hr = Heo[(pelPeo) (~-')/~ + 
~P-r(ue/v,n)2]; (a/cv) ~ [kg/(m 2 �9 U~ [km/sec] is the flow velocity; p~  [kgf-sec2/m 4] is the flow 
density; RN [m] is the radius of the spherically blunted end; and pe/peo is the pressure distribution on the 
surface referred to the retardation pressure determined from the results of solution of the spatial gas-dynamic 
problem [6]. 
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The effect of blow-in on the heat flux in the screen zone on the conical part can be estimated from the 
results of [7]. In this case, for moderate blows of a homogeneous gas we have 

q,~,(z.~y) = ( l i t  - h,,), -- [1 - k, bk2]. (1.11) 

Here kl and k2 are constants; b is a dimensionless parameter that characterizes the ratio of the total mass 
of blown gas to the product of the heat-exchange coefficient in cross-section z in the absence of blow-in by 
the surface area of the cone from zl to the current value of z. We write the law of gas-flow rate (pv)w in the 
coordinate system (s', ~ ,  nl)  related to the retardation point, for which the flow on the spherically blunted 
end is axisymmetric, as (pv )w( s ' )  = (pV)w(O)(1 + a sin2s'). Taking into account the closeness of ~y and T' for 
the calculated parameters, we obtain 

b = 2(pv)w(0)[l - cos s] + a(2/3 - cos s] + (1/3)cos 3s])] (1.12) 
(z - zl)(cos f3)-112 sin (7r/2 - /3 )  + tan/3(z - zl)] ( c ~ / % ) ~  ' 

where coss' l = cossl coso~ + sins1 cos~s in~ ;  sl = 7r/2 - /3 ;  and (~ is the angle of attack. The representation 
in the form of the second relation in (1.11) for spatial flow was used for the vicinity of the symmetry plane 
on a windward side [8]. In our case it is extended to the entire side surface, and this requires a more precise 
definition of the influence of blow-in from the surface of the blunted end on the heat-exchange characteristics 
in the screen zone. As a whole, Eqs. (1.10) and (1.11) determine the heat load on the conical part of a streamed 
body within the framework of the above assumptions. 

As regards the thermal regime of a porous spherical casing, it has been shown [3] that, with blow-in 
of a gas, a steady-state regime is rapidly established on the porous part for constant retardation parameters. 
As the flow rate of the cooling gas increases, the temperature of the spherically blunted end becomes lower 
than that of the conical part, i.e., there is heat transfer from the conical to the spherical part. To model this 
process and to estimate the effect of heat transfer in the conjugation region, we imposed two conditions at 
the interface between the spherical and conical parts (z = zl): the adiabatic condition and the condition of a 
given temperature that coincided with the initial cooling gas temperature in the casing cavity 

_-0 or 01 - - ' i  
Z ~ Z  I Z - - Z  I 

The boundary problem was solved numerically by the method of splitting using the implicit difference schemes 
obtained by the iteration-interpolation method of [9, 10]. The initial calculation grid consisted of 31 x 61 x 6 
points in the r, z, and ~o directions. A twofold concentration of points in the ~o coordinate caused a difference 
in the surface temperature not greater than 2%. In the solution of the problem, the time step was variable 
and its value was determined by assignment of a surface-temperature rise. Iterations were performed in each 
time layer, because of the nonlinearity of balance conditions (1.3). From 300 to 1600 calculated time layers 
were required to enter a steady-state regime. This number was determined by the heat flux and the thermal 
properties of the material. 

2. In numerical integration the cone half-angle is /3 = 5 ~ the radius of the blunted end is R N  = 

1.85- l0 -2 m, zf = 5.2, and rwl = 0.22. The flow parameters were constant: poo = 0.02kgf.  sec2/m 4, 
and Uoo = 2.078 km/sec, which corresponds to Mach number Moo = 6. In this case, the retardation enthalpy 
He0 = 2.46.106 m2/sec 2, and the angle of attack (~ = 20 ~ The Reynolds number obtained from the retardation 
parameters is Re = P e o v / ' 2 - ~ R N / # e o  .~ 0.7" 106, which is responsible for the turbulent flow regime in the 
boundary layer on the conical part of the body. The thermal properties of the conical part were constant. 
The heat-conductivity coeff• varied over a wide range: A2 = 10-380 W / ( m .  K). As base materials we 
used steel [)~2 = 20 W / ( m .  K), c2 = 600 J / (kg  �9 K), and p2 = 7800 kg/m 3] and copper [A2 = 380- W / ( m .  K), 
c2 = 386 J / (kg .  K) and p2 = 8930 kg/m3]. The initial temperature was Ti = 300 K and ~ = 0.85. 

Figure 1 shows the distributions of heat fluxes qw and surface temperature Tw along the z coordinate in 
various meridional cross-sections [curves 1-3 correspond to the windward side of the symmetry plane (~2 = 0), 
and curves 1'-3' correspond to the leeward side (tp = r)] for a steel specimen for (pv),o = O. The calculations 
were performed using the boundary conditions of the first kind from (1.13) up to the moment the process 
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entered a steady-state regime. Curves 1 and 1 ~ correspond to t = 5 sec, and curves 2 and 2 ~ to the steady- 
state regime. Curves 3 and 3 ~ also correspond to the steady-state regime, but in this case adiabatic condition 
(1.13) was used. In addition to the three-dimensional calculations (solid curves), the two-dimensional problem 
following from (1.2) was solved along various cross-sections ~ (dashed curves) to estimate the influence of heat 
transfer in the circular direction. The dashed-dotted curves denote the distributions of the radiation-balance 
temperature in the symmetry plane on the windward and leeward sides. This temperature was determined 
from the condition of conservation of energy 

~,~x/-~e Pr Ae0 4 (2.1) " ~ ,  = 'fro.B,. z. 

The distribution of heat fluxes at ~q = 300 K (curves q~,i and q~i for ~ = 0, ~r) shows that the heat 
load varies substantially along the circular coordinate, and this causes heat transfer from the windward to 
the leeward side. The solution taking into account the heat flux in the circular direction gives much higher 
temperature values on the leeward side (by more than 300 K for t ~ oo) than the solution of the two- 
dimensional problem. At the same time, the surface temperature of the most heat-stressed part for ~p = 0 
decreases by more than 100 K for 1.5 < z < 3. As should be expected, a substantial stratification of the 
surface temperatures occurs on the windward and leeward sides at times that are close to the initial time in 
the solution of the three-dimensional problem (curves 1 and 1~). When the steady-state regime is established, 
the difference in Tw in the symmetry plane of the flow does not exceed 250 K for the region adjoining the 
spherical fore end. On the back part of the conical surface, the difference in surface temperatures is not greater 
than 20 K. With distance from the fore end, the values of T,, for ~ = ~r exceed considerably (due to the heat 
transfer to the leeward side) the radiation-balance temperature T~r , which determines the highest possible 
surface temperature in the absence of heat flux in the longitudinal and circular directions. 

It is interesting to analyze the boundary condition at the joint of the spherical and conical parts. 
Curves 1 show that initially the effect of the given boundary conditions for z = Zl is localized within a fairly 
narrow region adjoining zl and does not manifest itself on the major part of the conical surface (curves 1 
continued by points were obtained for the adiabatic condition for z = zl). As t --~ oo, the resulting values of 
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the stationary surface temperature (solid and dashed curves 3 and 3 t) satisfy the expressions 

s f  x 
Ot 

s l  0 

s f  

/ ] ( H T  - - 4 d s  = 0 ( 2 . 3 )  

Sl 

for the three- and two-dimensional cases, respectively, which can be readily obtained by integrating the heat 
conduction equation written for the conical part in the intrinsic coordinate system. Calculations were also 
performed for )~2 ~ e~, which leads to equalization of the temperature field in the streamlined-body material. 
The temperature values are in good agreement with the results of calculations by the formulas following from 
(2.2) and (2.3) using the expression for the heat flux 

sf  ~- 

y f r~ (a /%) dsd~ 
qw(s,~2)= (~-) (Heo-%T,o) ,  ~l O (Heo-%Tw)=eaT4;  (2.4) sf 

r f rwds 
Sl 

sf sf 

Sl Sl 

For the given case, when solving the three-dimensional problem, we have Tw(s, ~o) = 1604 K, and, ignoring 
the heat transfer in the circular direction, Tw(s,0) = 1790 K and Tw(s,Tr) = 1388 K. 

We note that formula (2.1) characterizes the radiation-balance temperature Twr in the absence of 
heat flux to the c-phase, which is usually regarded as the maximum possible temperature. This follows from 
the above statement of the problem assuming the one-dimensionality of the process for t ~ r when the 
temperature field in material is equalized. As a result of heat exchange, Tw can be much higher than Twr on 
the leeward side, as follows from Fig. 1 and analysis of formulas (2.2)-(2.5). 

Figure 2 shows the effect of the material of the conical part. In the cross-section z = 1.65, the 
distributions of the stationary surface temperature along the circular coordinate are presented for copper 
(curves 1) and steel (curves 2) with the boundary conditions of the first kind from (1.13). Curves 3 and 4 
(for copper and steel, respectively) were obtained for the stationary temperature under adiabatic conditions 
for z = zl. The dashed curves correspond to the absence of heat exchange in the circular direction, and the 
dashed-dotted curve refers to the radiation balance temperature of the wall Twt. The figure also shows initially, 
the behavior of the heat flux qwi(~o) in the various z cross-sections at the initial moment, which leads to the 
nonmonotonic behavior of dashed curve 4 for Tro, versus the circular coordinate % which also follows from 
analysis of formula (2.5). Figure 2 shows that use of a better heat-conducting material decreases significantly 
(to 800 K) the temperature of the streamlined body under the boundary conditions of the first kind which 
model the heat removal to the spherical part of the body. 

The curves in Figs. 2 and 3 show the dynamics of surface-temperature fluctuations in the cross-section 
z = 1.65 versus the time of the process. Evidently, under the boundary conditions of the first kind for z = zl 
for a poorer heat-conducting material (for steel, curves 2, 21 for the windward and leeward sides in the plane 
of symmetry) the times of transition to the steady-state regime increase considerably compared with those 
for a better heat-conducting material (copper, curves 1 and 1~). Neglect of the heat exchange in the circular 
direction has little effect on the times of attainment of the stationary temperature (dashed curves 1 and 1~). 
Curves 3 and 3 ~ obtained for steel under adiabatic conditions for z = zl show that the form of conditions 
(1.13) also has a weak effect on the times of attainment of a steady-state regime. 

Figure 4 shows the effect of blow-in from the surface of the spherically blunted end for (pV)w(O) = 
3 kg/(m 2 �9 a = 9, kl = 0.285, and k2 = 0.165. In this case, as in the previous figures, curves 1 and 1 ~ 
corresponding to the stationary temperature Tw were obtained for copper; curves 2 and 2 ~ were obtained for 
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steel. For z = Zl, the boundary condition of the first kind was used. As should be expected, a decrease in 
the heat flux in the screen zone causes a drop in the surface temperatures of the conical part and also in the 
maximum radiation-balance temperature for ~ = 0. Comparison of curves I and 1 ~ obtained with and without 
blow-in, and also of curves 2 and 2 ~ with the corresponding curves in Fig. 1, shows that  blow-in of the gas 
causes a greater stratification of the temperature curves T,,,(z) for ~ = 0, r .  This is caused by the behavior 
of the heat flux qt~(~) due to the entry of a large mass of the cooling gas into the leeward side of the conical 
part. This, in turn, will cause an increase in the role of heat transfer in the circular direction with increasing 
angles of attack. The gas blow-in from the surface of the spherically blunted end also leads to a monotonic 
increase in the heat flux qw in the screen zone of the conical part in all meridional cross-sections in contrast to 
the data in Fig. ! [8]. This increases the heat flux along the z coordinate in the peripheral regions. Therefore, 
dashed curves 2 and 2 ~ lie below the radiation-balance temperature values. 

Comparison of curves 2,-2' in Fig. 3 [dashed curves 2 and 2' were obtained for (pv),,, ~ 0] shows that 
the dynamics of surface-temperature fluctuations in the presence of blow-in is close to the behavior of the 
corresponding curves without blow-in. 

The effect of heat transfer on the maximum surface temperatures in the vicinity of the symmetry 
plane on the windward and leeward sides (curves 1 and 1 ~) is generalized in Fig. 5 for various materials at a 
given gas temperature in the cross-section z = zz. As above, the dashed curves were constructed ignoring the 
heat transfer in the circular direction. Figure 5a corresponds to the absence of blow-in from the spherically 
blunted end, and Fig. 5b to (pv)w # O. The quantity 1IS = (v/~Pr( ,~e0/$.))  -1 expresses the ratio of the 
conductive to convective heat fluxes, T. = T~ = 300 K, and the black triangle and black circle correspond to 
the calculations for various values of the conjugation parameter. 

As one might expect, on the windward side (~ = 0) the dependence of 8w=~x on 1/S is of a monotonic 
decreasing character. As the heat conductivity coefficient increases, neglect of the heat exchange in the circular 
direction overestimates the level of maximum temperatures by a factor of 1.5. On the leeward side (~ = ~r), 
allowance for the heat exchange in the circular direction changes the qualitative character of the curve and 
leads to a considerable increase in the level of maximum temperatures for various materials. Figure 5 shows 
that the blow-in decreases considerably the maximum temperatures of the body. However, the larger decrease 
in 0w==, is caused by the use of heat-conducting materials. 
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Thus, we studied the effect of the thermal properties of materials on the temperature fields in a body 
by assigning the heat flux from the gas phase with and without blow-in from the surface of the spherically 
blunted end. We considered the change of A2 from the value A2 = 0, which corresponds to the radiation balance 
temperature Twr(z, ~), to the value A2 ---+ oo, at which formulas for determining the stationary isothermal 
temperatures were derived. The influence of heat transfer was studied in a spatial case for a series of materials. 
It was demonstrated that the blow-out of a cooling gas causes a drop in the maximum surface temperature 
due to the weakening of the heat flux in the screen zone. However, a larger effect is obtained by using highly 
conducting materials, which ensure a strong heat removal toward the porous spherically blunted end. 

To conclude, the authors are very grateful to V. D. Gol'din for the results of gas-dynaxnic calculations. 
This work was supported by the Russian Foundation for Fundamental Research (Grant 93-01-17286). 
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